Complete the unit circle below.

Inside the circle, label the radian measure of each point.

Outside the circle, label the corresponding x -and y -coordinates of each point.

SCORE: _____/8 PTS $(\frac{1}{2}$ POINT DEDUCTED

FOR EACH ERROR)

Use the unit circle above to fill in the blanks below. Simplify all answers (including rationalizing denominators). SCORE: _____/4 PTS Write "UNDEFINED" if the expression has no value.

[a]
$$\csc \pi = UNDEFINED & (y)$$

[b]
$$\tan \frac{7\pi}{4} = \frac{1}{\sqrt{2}} \left(\frac{\sqrt{3}}{2}\right)$$

$$[c] \cot \frac{4\pi}{3} = \frac{\sqrt{3}}{3} \qquad \frac{-\frac{1}{2}}{\sqrt{3}} \left(\frac{x}{y}\right)$$

[d]
$$\sec \frac{5\pi}{6} = \frac{-2\sqrt{3}}{3}$$
 $\frac{1}{-\sqrt{3}}$ $\left(\frac{1}{\times}\right)$

Fill in the blanks below. Simplify all answers (including rationalizing denominators). Write "UNDEFINED" if the expression has no value.

SCORE: _____/ 5 PTS

SCORE: /2 PTS

[a]
$$-\frac{25\pi}{6}$$
 is co-terminal with $\frac{177}{6}$ (NOTE: Your answer must be between 0 and 2π) $-\frac{2577}{6} + 677$

$$[b] \cos\left(-\frac{25\pi}{6}\right) = \frac{\sqrt{3}}{2}$$

[c] The complement of
$$\frac{\pi}{5}$$
 radians is $\frac{3\pi}{10}$ $\frac{7\pi}{2} - \frac{7\pi}{5}$

[d] 81 degrees =
$$\frac{\sqrt{17}}{20}$$
 radians $81 \times \frac{77}{180}$ [e] $\frac{7\pi}{12}$ radians = $\frac{105}{12}$ degrees $\frac{7\pi}{12} \times \frac{180}{70}$

Suppose
$$\sin t = -\frac{12}{13}$$
 and $\cos t = \frac{5}{13}$. Fill in the blanks below. Simplify all answers.

[a]
$$\cos(-t) = \frac{5}{13}$$
 $\cos t = \frac{13}{5}$

SCORE:

[a] The central angle is $\frac{5}{6}$ radians. $\frac{10m}{10}$ [b] The area of the intercepted sector is 60 mm^2 . $\frac{1}{2}(12\text{mm})^2 = (\frac{1}{2}r^2\theta^2)$

[c] If an object is moving around the circle at a linear speed of 30 mm/s.

its angular speed is
$$\frac{5}{2}$$
 $\frac{|2AD|ANS}{|2mm|}$ $\frac{30mm/s}{|2mm|}$ $(V = VW)$